1、前言
美国“9.11”事件后,钢结构建筑用钢防火性能已引起政府及设计部门高度重视。耐火耐候钢作为新一代建筑用钢,具有屈强比低、抗层状撕裂良好、焊接性能及耐火性能和防腐性能良好等优点,在中低层或高层建筑、场馆/网架大跨度建筑、钢结构建筑等领域使用前景较广。
耐火性能高低通常以日本建筑防火标准为指导,要求试验钢在600℃高温时屈服强度不低于室温屈服强度的2/3。普通钢无法满足要求,必须进行细致的防火及防腐处理,费用昂贵且耗时较长。
欧美、日本等发达国家利用Cr、Mo、Nb等合金元素的特性,开发出了低C-Mn-Mo-Nb系列、耐火温度为600℃的建筑用耐火钢,在600℃条件下,屈服强度能保持在室温的2/3以上。为了提高钢的高温性能,通常添加0.50%Mo以及0.02%Nb[1]。Mo+Nb合金化虽然满足防火设计要求,但增加了钢厂生产成本,销售价格过高,限制了它的推广应用。对于用钢量较大的中低层建筑、空间网架结构、钢结构建筑范畴,无法与传统使用的普通钢+防火涂料/防腐涂料相抗衡。
本文结合攀钢近期的研究工作,研究开发低成本的耐火耐候钢以适应市场需要。试验钢化学成分设计以低碳当量为基础,对含Mo-Nb、Mo-Cr-Nb-Ni、低Mo-Nb-Ti、无Mo合金系钢开展实验室研究,经冶炼、锻造、热轧等工序后,进行相关检验及分析。
2、试验方法
试验钢化学成分以低C-Mn为基础,对含Mo-Cr-Nb-Ni、Mo-Nb、低Mo-Nb-Ti、无Mo钢开展了研究,对比钢为耐候钢。试验钢的化学成分表2-1。
表2-1试验钢的化学成分(%)
钢种CSiMnPSMoCu添加元素
Mo-Cr-Nb-Ni≤0.12≤0.50≤1.50≤0.120≤0.02≤0.80≤0.40Cr、Ni、Nb等
Mo-Nb≤0.12≤0.50≤1.50≤0.120≤0.02≤0.80≤0.40V、Ti、Nb等
低Mo-Nb-Ti≤0.12≤0.50≤1.50≤0.120≤0.02≤0.60≤0.40V、Ti、Nb等
无Mo钢≤0.12≤0.50≤1.50≤0.120≤0.02/≤0.40V、Ti、Nb等
试验原料为低碳铝镇静钢,经中频感应炉冶炼、合金化后浇铸成钢锭;钢锭加热后锻造成板坯(尺寸为25×230×400mm);经加热、3~5道次轧制、冷却,最终厚度为5~7mm。
冶炼设备为150Kg中频感应炉,锻造设备为750Kg空气锤,热轧轧机为Φ450轧机。高温拉伸试验设备为MTS810万能试验机。
每炉号试验钢各取1个金相试样,用硝酸酒精溶液腐蚀,在金相显微镜上观察其室温微观组织。采用JSM-5600LV扫描电镜+INCA能谱仪分析常温拉伸断口形貌。采用H800-EDAX透射电镜观察析出物形貌。
3、试验结果
3.1常温拉伸断口分析
试验钢常温拉伸试样在宏观下为剪切断口,在断口附近有明显的塑性变形,镜下观察整个断面均为韧窝形貌。
3.2力学性能
试验钢常温拉伸、高温拉伸试验结果见表3-1。
表3-1试验钢力学性能
钢种卷取温度σ0.2,MPaδ5,%2/3室温σ0.2,MPaσ0.2,600℃20minσ0.2,600℃120min
Mo-Cr-Nb-Ni550℃52027.5347325/
650℃52522.5350395318
Mo-Nb500℃52020347429/
550℃57514.5383409/
650℃58521.5390472407
700℃58023387414/
低Mo-Nb-Ti450℃42530283300/
500℃45018300350324*
550℃44525.5297306/
500℃44024.5293323/
650℃52022347354/
700℃48522323325/
无Mo钢450℃45530303321/
500℃48522.5323343/
550℃47023313361353*
600℃47018313325314
650℃47529.5317335/
700℃50520337379/
对比耐候钢42038280183/
注:*试样600℃长时间保温时间为150min。
3.3金相组织
试验钢金相组织由铁素体、珠光体、少量贝氏体组成。铁素体晶粒度为10级左右。以Mo-Nb钢及无Mo钢不同卷取温度为例,见图3-2、图3-3。
图3-2Mo-Nb钢不同卷取温度金相组织(400×)
图3-3无Mo不同卷取温度金相组织(400×)
4.讨论与分析
4.1不同化学成分耐火耐候钢热轧工艺对耐火性能的影响
四种不同化学成分的试验钢在不同卷取温度下的高温屈服强度。
Mo元素对提高耐火耐候钢高温屈服强度比较有效。在冶炼、锻造、热轧工艺制度相近的条件下,Mo-Nb钢、Mo-Cr-Nb-Ti钢的高温屈服强度优于低Mo-Nb-Ti、无Mo合金系钢。在微观机理方面,Nb在钢中析出Nb的第二相粒子,使钢的铁素体基体强化;Mo在钢中多以固溶体的方式存在,部分析出Mo2C,使钢的铁素体基体强化。而复合添加Nb+Mo还伴随着Nb的第二相粒子在晶界的析出,有效地阻碍晶粒的长大,明显提高钢的耐火性能[2]。
试验钢热轧卷取温度在500~700℃范围内,高温屈服强度变化不大,轧制后冷却速率对钢的高温屈服强度影响小。
4.2化学成分对不同耐火温度耐火性能的影响
选取卷取温度为650℃的Mo-Cr-Nb-Ti钢、Mo-Nb钢、低Mo-Nb-Ti钢、无Mo钢、对比钢分别进行耐火温度为350℃、450℃、600℃、700℃耐火性能研究,试验结果见图4-2。
图4-2试验钢不同耐火温度耐火性能
随耐火温度升高,试验钢的高温屈服强度呈下降趋势。耐火温度低于450℃时,Mo-Cr-Nb-Ti钢、Mo-Nb钢、低Mo-Nb-Ti钢及无Mo钢高温屈服强度变化不大,600℃时,试验钢的高温屈服强度仍能保持较高的强度水平(不低于室温屈服强度的2/3)。对比钢耐火性能较差,在300℃时高温强度已经明显降低,600℃屈服强度降低到200MPa以下,不能满足使用要求。
Mo+Nb钢高温性能最好;与普通建筑用钢相比,Mo+Nb钢吨钢增加成本665元/吨,而无Mo钢仅为251元/吨,性价比最高。分析试验钢及对比钢的金相组织,对比钢组织主要为铁素体、珠光体,而试验钢组织为铁素体+珠光体+贝氏体多相组织,贝氏体组织的存在提高了钢的高温性能[3]。
4.3无Mo钢耐火机理
无Mo钢萃取复型样在H800-EDAX透射电镜下观察析出物形貌。析出物的分布情况对无Mo钢耐火性能起主要作用[4]。由于添加了Nb、V、Ti等微合金元素,无Mo钢热轧后形成的析出物(碳化物、碳氮化物)固溶温度超过700℃,能在耐火温度为600℃条件下保持析出形态,具有良好的高温稳定性。
无Mo钢析出物在钢中细小弥散分布,而这些第二相粒子属于不可变形的硬脆相。根据位错理论,塑性变形产生的位错线只能绕过第二相质点,随着绕过第二相质点位错线数量增加,形成的位错环数量增多。克服弯曲位错的线张力相应提高,强化了钢的高温屈服强度。在晶界附近的析出物,能有效地钉扎晶界移动,阻止基体晶粒长大,提高无Mo钢高温强度,如图4-3b。
5.结论
⑴4种试验钢在不同热轧工艺条件下均具有较高的耐火性能,高温屈服强度(600℃σ0.2≥300MPa),2小时以上保温后,试验钢仍能保持较高的高温强度(600℃σ0.2≥300MPa)。普通钢在350℃附近屈服强度明显降低,600℃屈服强度低于常温屈服强度2/3。Mo+Nb钢高温性能最好。
⑵试验钢组织为铁素体+珠光体+贝氏体多相组织,贝氏体组织的存在提高了钢的高温性能。
⑶无Mo钢第二相质点弥散分布能有效提高高温屈服强度。
广州市大业建筑有限公司是一家专业承接各类钢结构工程项目,集设计、制作、安装于一体的高新技术企业、可提供全套钢结构解决方案,主营钢结构工程, 广州膜结构,广州网架,广州钢结构雨棚,广州钢结构阁楼,广州钢结构别墅(厂房、展厅、阁楼、雨棚、张拉膜等)、钢结构住宅和钢结构别墅等多类型的全系列产品。服务电话:020-86830835 13312888381 18565549527
广州白云站钢结构屋顶今日提升!2023年建成!6条地铁汇聚!
3月18日,广州白云站钢结构整体提升工程开始进行。随着屋盖钢结构的缓慢提升,云山珠水、木棉花开的外观雏形已现,为下一步广州白云站一期工程装修装饰和机电安装施工打下坚实的基础
... 【更多详情】